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ABSI'RA.CT: The failure time distribution is estimated in the nonparametric 
context when some of tbe observations arc censored. The time interval is partitioned 
into fixed class intervals, and number of failures and number censored in each of 
these intervals are observed. Using a Dirichlet distribution as the prior, the 
resulting estimates of the survival function and the failure rate have a nice and 
simple form. If instead of the fixed time intervals, one uses the "natural" intervals 
formed by the observed failure times, this gives essentially the same results as in 
Ferauson IUld Phadia (1977), Susarla and Van Ryzin (1976), but in a much simpler 
way. Bayes estimation under the increasins and decreasing failure rates is also 
considered, and applications to accelerated life testing are discussed. 

1. INTRODUCTION 

Let T be a non-negative random variable representing 'the failure 
time, with distribution function F; it may be discrete or continuous or 
a mixture of both. The survival function F is given by 

F(t) =Prob (T ~ t)=l-F(t-0) 

and the hazard or age-specific failure rate of F is given by 

X(t)= lim Prob.(t ~ T < t+h IT~ t) 
h..,.o+ h 

if the limit exists. If F is continuous and X is integrable, then 

F(l)=exp { -f X(s) ds } 

Furthermore, ifF bas density [then 

'-(t)= f_(t) _ 
FU) 

------------'f) 1 
• Now in the Dept of Mathematics; I. I .. T., Bombay. 
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Given a continuous failure time distribution F, consider a parlition 
{(t,,t,.. 1m-o of (O,oo) with t 0=0 and It+~ =oo. Consider a set of N 
individuals. We take observations at the k time points t1<.tg<, ... <tk 
(say at the end of each hour, day or similar period, not necessarily of 
equal lengths) and observe how many individuals failed and how many 
were censored (e.g., left the study) in each of these intervals. Let n, 
denote the number of failures and m, the number censored in the 
interval (t, ,t, +1], i=O,l, ... , k- I. For definiteness, we shall assume 
that those censored in the interval (t, ,t,, 1 ] survived past t 1 +1' Without 
loss of generality, we can and shall assume that tk is sufficiently large 
that no deaths or censorings occur beyond t,. so that nk =0 and m11 =0. 

k-1 11-1 11-1 
· Let n= .E n,, m= S m1 so that N=n+m. Define nw= .E n1 and 

i-o i-o ;•i 
k-1 

m< 11= .E m;. Then N<,,=nw + m<il is the number of individuals at 
;-i 

risk at time t, +0 ; that is, whose failure or censoring time is at least t,, 
1=0,1, ... , k-1. 

For 0 <. i <: k define 

... (1.1) 

with q0 =p0 • Clearly, q"=l. Holding /(t)=p1/{ti+ 1 -t,) constant 
over the interval (t, ,t, + 1 ], the survival function can be approximated by 

={I 
(1.2) 

and the corresponding failure rate is 

>.(t) = q i t < t ...,.. t 
{(1, . 1-t,)-(t-t,)qd , i ~ ''1' 

i=O,I, ... , k. ... (1.3) 

Our problem is to estimate the survival function F(t) and the failure 
rate >.(t) defined in (1.2) and {1.3) respectively using the data on 
n={n 1H:~ and m={m,};:~. We will denote this data by d. 
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2. BAYES ESTIMATION OF SURVIVAL FUNCTION AND FAILURE RATE 

A Bayesian considers the parameter q={qd~::.~ as a random vector 
and represents his/her opinion about q by a probability distribution, 
called a prior distribution, or simply, a prior. After observing the 
failure data d=(n,m), the Bayesian may change the opinion about q, 
and this is represented by the distribution of q given the data d, called 
the posterior distribution. let ~ be the prior density function of.q. 
The posterior density function of q given d, namely e(qid) is expressed 
by the relation 

~(qJd) oc Hq)L(qjd). ... (2.1) 

Here, L(qld) is the likelihood function of q at the point d, and the 
proportionality symbol oc is used to indicate that the left side of (2.1) is 
equal to the right side of (2.1) divided by the factor J L(q/d)f(q) dq, 
which does not depend on q. It is clear from the relation (2.1) that the 
change of opinion about q after the data are obtained is effected 
through the likelihood function. A Bayesian regards the likelihood 
function as the sole reservoir of all the relevant infonnation about the 
parameter that is contained in the data. This is usually stated as the 
likelihood principle. (See Basu (1975) for more on the likelihood 
principle.) 

One usually employs a prior within a family .!1. of distributions, 
which is large enough to accommodate various shades of opinion about 
the parameter q. Further, if e E I is a prior for q, then the posterior 
~(qjd) ought to be in a simple computable form. If ~(qld) E .a for all 
~ E ..'1 and all data d, then .a is called a conjugate family of priors. 

Observing that a prior for q={q,}~:~ corresponds to a prior for 
p= {p, }~ • 0 , we define a conjugate family of priors for p as follows. 
Let a={a,l~-o be a sequence of finite no~-negative numbers. We 
say the random vector p has a k-dimensional Dirichlet distribution 
With parameter a and denote it by p--D(a), if the distribution of 
(p 0 , P 1 , ... ,p1>- 1 ) is D(a 0 , a 1 , ... , ak- 1 ; ak) as defined in Wilks (1962), 
Section 7.7. 

Under the prior D( a) for p the coordinates of random vector q are 
independent, with q, having a Beta distribution with parameters a, 

k 
and a 1u 11 denoted by Beta (a,, a1H 1>), where au 1= l: a1 , i=O, 1, ... , 

~--
11 
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k-1. The Bayes estimate under prior D(a) (with respect to the 
squared error loss function) of q i based on no sample, called the 
prior Bayes estimate of q, , is 

(2.2) 

After observing the data d the likelihood function of q at the point 
dis 

... (2.3) 

Using (2.1) and (2.3) the posterior distribution of q given the data d is 
aivcn by the relation 

The Bayes estimate of q, baaed on the data dis 

u E ( ld) a,+n.: q, , .. = Dl•l q, a +n +m 
(il "l (il 

Clearly, from (2.2) and (2.5) we have 

~ ... =C.:q.: ... +(l-' .:)l,, 

... (2.5) 

.. . (2.6) 

where C,=a10{(acc1+Nc.: 1). Thus ql[, .. is a weighted mean of the 

prior Bayes estimate q, , .. and the empirical estimate l,=n, {N1, 1 with 

weights{, and (l-{,) respectively. Substituting q, ... and qL. in 
equations (1.2) and (1.3), the Bayes estimates of F and A for no 
sample size and with the data d are 
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and 

t.(t)= a, 
{(t H 1 -t ,)aw-(t-t ,)ad 

~N() a,+n, ~ 
"

1 
={(t,t:t-t,) («w+Ncs>)-(t-t,) (a 1+n,)}' t,<t-..:::ti+,_, 

... (2.8) 

i=O, 1, .. . , k-t. 

It appears that a,, 1, the sum of the parameters a, and a11 +1) of 
the distribution Beta (a,, a1,+11) of qi, enters into the expressions (2.2) 
and (2.5) as the "prior sample size". This has given rise to the general 
feeling that allowing aw to become small not only makes the "prior 
sample size" small but also it corresponds to no prior information. 
By investigating the limit of the Bayes estimate of q, when a1., is 
allowed to converge to zero, we show below that it is misleading to 
think of a1, 1 as the prior sample size and the smallness of a1, 1 as 
having no information. (This result is discussed in Sethuraman and 
Tiwari (1981) in the context of Dirichlet measures.) 

Consider the convergent sequences of non-negative numbetl 
a~'={a0~-0 , y=O, 1, 2, .. . . IfaJ-'»a~ as y-'»oo, then q'~q0, where 

D 
for each y, q'={qH is as defined in (1.1) and-+- represents convergence 
in distribution, and 

(2.9) 

as,.,__.. oo. Further, if we let ar, 1 converge to zero such that a:Jar,. 
converges to a constant o,, 0<0,<1, then in the limit as ,.. tends *o 
infinity q: is the Binomial (1, {},) random variable ; and 

(2.10) 

... 
which is the empirical estimate ~ •• · i=O, 1, ... , k-1. Also,{! (which 

is as defined in (2.7) with a replaced by a') in the limit is the empirical 
estimate 
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~ { (t-t ·) n - }'-1( n- ) . F(t)= 1-(t -~)J\~- ~1 1- -J\/ ,t,<t<.tH 1 ,l=0,J, ... ,k-l. 
~+1 i lV<il J-0 lV(j) 

... (2.11) 

In the remainder of this section, we explore the relationship 
between the Bayes estimates (2.7) and (2.8) with the well known 
Kaplan-Meier estimates (Kaplan and Meier (1958)). Instead of starting 
with a fixed partition {(tc, te+ 1 Jl;-o of (0, oo), let {t, }~_ 1 now denote 
the distinct observed failure times, again with 10 =0 and tk+ 1 = oo. 
Let 11;. denote the number of failures at t&+ 1 , i=O, 1, ... , k-1, and 
let m,, n"" mu 1 and Nu, remain as before. We wish to partition 
the time-interval using t /s, i= 1, 2, ... , k as before. This procedure 
is clearly justified when T is a discrete random variable and {t ;.}~ _1 is 
its support so that failures occur only at these points. On the other 
band, one may look at the case of continuous failure times as being 
approximated by a discrete situation like this where, because of 
observational restrictions, one observes the process at t Hl and makes 
the approximation that the n, failures in the interval actually occured 
at te+ 1 instead of over the period (t1 , tH 1 ), i=O, 1, ... , k-l. This 
is analogous to the assumptions one makes in computing statistics 
like the mean and variance from continuous data that bas been grouped 
into class intorvals. It should be remarked that the procedure used 
by Susarla and Van Ryzin (1976) amounts implicity to such a partition-
ing of the time-interval using the distinct observed failure times and 
using it to find the censoring numbers (cf. their Section 3). In this 
case, the survival function and the failure rate are given by (cf. equa-
tions (1.2) and (1.3)) 

and 

{ 

q, at t=tH 1 
>.(t)= 

0, ti < t ~ t,+1, i=O,l, ... ,_ k. 

. . . (2.1 ) 

... (2.13) 

Also, the Bayes estimates of F and>. are given by (cf. equations (2.7) 
and (2.8)) 

" i 
p~(t)= n 

j•o ... (2.14) 
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r 
I 

lf:(t)=i l o, t, < t < t 1 +1 , i=O,l, ... , k-1. 

... (2.15) 

Now an equation similar to (2.6) holds with A1 replaced by the Kaplan-

Meier estimate AKM(t)= Nn, at t=ti+ 1 • Again, if au 1 -+- 0 and 
{ l) 

~ -+- 0 • 0 < 0, < l, in the sense discussed above, then the estimates 

(~~V~) and (2.15) converge to the Kaplan-Meier estimates ofF and A, 

namely 

... (2.16) 

and 

t
r ;; " at 

AKM(t)= 
0, t. < t < lsu• i=O,l, ... , k-l. 

... (2.17) 

3. ESTIMATION OFF AND A WHEN F HAS INCREASING (DECREASING) 

FAILURE RATE 

We say F has an increasing (decreasing) failure rate, i.e .. F has IFR 
(DFR) if ,\(t) is a monotone increasing (decreasing) function oft. We 
see from (1.2) that F has IFR (DFR) if the coordinates of q satisfy the 
relation q;.u :> (EO;) q,, for each i. In the Bayesian framework, the 
prior ~for q should incorporate the assumption 

... (3.1) 

We now consider the cases when F has IFR and DFR separately, 
since two different priors are appropriate in these two cases. When F 
bas IFR a logical assumption on the prior D(a) for pis 

a,u > a,, i=O, I, ... , k-1. ... (3.2) 
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Let X and Y be any two random variables. The notation X~ sc Y 
denotes the fact that X is stochastically larger than Y ; that is 

Prob (X ~ x) ~ Prob (Y > x) for all real x. 

Let Ya,IJ denote a random variable having distribution Beta (a,p). It is 
well known that Y.,.,, 11 , ~sc Y,.,8 if a'> a and p' ~ {J. Then under 
assumption (3.2) we get 

.. . (3.3) 

Clearly, (3.3) implies that 

qH 1 ;;;. sc q, , i=O, 1, .. . , k-2. ... (3.4) 

Also, under the assumption (3.2) equation (2.2) gives 

'ku,u :> q;. ,.,., i=O, 1, ... , k -2. ... (3.5) 

Thus the prior Bayes estimate of .A is increasing in t and, therefore, 
it follows that the prior Bayes estimate ofF has IFR. However, under 

the assumption (3.2) the Bayes estimates {~ .• } based on the data d 
need not satisfy a relation similar to (3.5) unless 1the data is such that 
n 1 • 1 > n,, i=O, l, ... , k-2. But the data need not satisfy these 
conditions. If we have strong reasons to believe that the Bayes 

estimates{~ ... } should satisfy the relation 

~+1o« ~ ~• "' i=O, 1, " ' ' k-2. ... (3.6) 

then we require 

n'+ 1 ~ n,, i=O, 1, .. . , k-2. ... (3.7) 

If a reversal occurs in (3.7), that is, if n1+1 < n1 for somej, then we 
pool the adjacent violators and replace both nJ+1 and n; by 
.j(n 1 + n; +1). We now check if the new sequence is properly ordered, 
i.e., the new sequence of n ."s satisfies the relation (3. 7). If a reversal 
exists, then we replace again by appropriate averages. We continue this 
procedure until all reversals are elimina~ed. This procedure of pooling 
adjacent violators is commonly used in isotonic regression (cf. Proschan 
and Singapurwalla (1980)). 
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When F has DFR then D(a) does not serve as a reasonable prior 
for p (or q). In this case an appropriate prior for q is to consider the 
qi's to be independent with q, having a Beta (a,,b-s) distribution with 
a, > 0, b;. > 0, i=O, 1, ... , k-1. The prior for pis then well-defined 
and it is called the generalized Dirichlet distribution -of which the 
Dirichlet distribution is a special case. Under the assumption 

a, ;?-: a &+1• i=O, 1, ••• , k-2 (3.8) 

and 

••• (3.9) 

we get 

••• (3.10) 

The Bayes estimate of q, (under the generalized Dirichlet prior for 
p) for no sample is 

• a . 
q, ,Go= --'-- , i=O, 1, ... , k-1 a,+b, 

and based on data d is 

... (3.11) 

... (3.12) 

Clearly under the assumptions (3.8) and (3.9) the prior Bayes estimates 
{q,,aDl satisfy 

q& ,GD ;;;;<: q$+ 1 .GD , i=0, 1, ... , k-2. ... (3.13) 

showing that the prior Bayes estimate of }..(t) and F(t) are decreasing 
with t. Again, as in IFR, under the assumptions (3.8) and (3.9) the 

Bayes estimates {4Lw} need not satisfy a relation similar to (3.13). If 

we strongly believe that {'.i1,Go} should satisfy the relation 

... (3.14) 

then we require 

(3.15) 
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Again, if a reversal in either of the inequalities in (3.15) occurs then we 
replace it by pooling adjacent violators (through the method described 
in the IFR case) until all reversals are eliminated. 

4. ACCELERATED LIFE TESTS 

In accelerated life tests the individuals are tested under different 
stress environments. Consider 1 accelerated stress environments 
E1 , E.,., ... , E, and let Eu denote the usual or use-condition stress. 
Let E, :::> E1 denote the fact that E, is more severe than E;· We 
assume the following cases. 

Case 1 is referred to as accelerated life testing with continuously 
increasing stress starting with stress level E1 , whereas Case 2 is the 
more usual situation for accelerated life tests. See for instance 
Mann eta/. (1974). 

Let F; be the failure time distribution under stress environment 
Ej'. Suppose N; individuals are observed under stress environment 
E;,j=l, 2, ... , I. Let n,. 1 be the number of failures and m,,, the 
number censored in the interval (t,, ti+ 1 ], i=O, 1, ... , k-1. Let 

k-~ k-1 
n1 = I: n,, 1 and m;= .~ m,,i so that N;=n 1 +m3 • Define 

• -o '-o 
k-1 k-1 

n1H 1 = 1: n,.;, m111 .; = 1: mr,J· Then N" 1•1=n1,\l.i+mc•>.; is r-' r-i 

the number of individuals at risk at time t, +O under stress environ-
mentEj. Letn;={n, ;} andm 3 ={m,, 3}anddenotethe data fn

3
,m

1
} 

by d1 . For eachj in Case 1 we can obtain the Bayes estimates of the 
survival function F; and the failure rate 'A 1 under the prior D((..i) for 
p, where <1 ={a,,J~-o· We assume that this jH1 sequence is related 
toagivensequence a=(a0 , a 1 , . .. , ak+z- 1 } by a,,J=ai+1_

1 
and a 

satisfies 

... (4.1) 

We then have from (3.4) that 

... (4.2) 
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and 

... (4.3) 

Also, under the assumption (4.1) we get 

•.• (4.4) 

and 

••• (4.5) 

Thus the prior Bayes estima~es ofF; 'shave IFR, and from (4.3) and 
(4.5) we get 

... (4.6) 

and 

... (4,7) 

The Bayes estimate of q, , 1 based on the data d 1 is 

j=l, 2, ... , /. (4.8) 

Clearly, under the assumptions (4.1) the Bayes estimates {q~.; ... } need 
not satisfy relations similar to (4.4) and (4.5) and hence lf, .. (t)'s need 
no~ satisfy relations similar to ~4.7). However, if data are such that 

nH 1 .; ~n,,;. i=O, 1, ... , k-.2 

n 1 . ;u ~n,,;.j=l, 2, ... , /, ... (4.9) 

and 

... (4.10) 

then the Bayes estimates {q!.; ... } will satisfy 

.rf+t • i•" ~ cft.; , a, i=O, 1, .. , k-2 

qr, J+1 1CI~qr,j,«> j=l, 2, ... , /. ... (4.11) 

12 
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Also,lf,a(t)'s will satisfy 

~7.u(t)~~f -l·a(t)~ · • • ~~ta (t). 

Case 2 is treated the same way using the 
for p and, therefore, it is omitted here. 
Singapurwalla (1980) for thiS ca5e.) 

... (4.12) 

generalized Dirichlet prior 
(Also, see Proschan and 

The Bayes estimates {~ . ; ... } are used to estimate the survival 
function F u and .a,. under E... For this we assume the model (cf. 
Proachan and Singapurwalla (1980) 

... (4.13) 

We can use the method of least squares to obtain the estimates 
w0 , w1 , ... , w1_ 1 • Using these estimates, an estimate of q, , .. under E11 

is aiven by 

• 
qi,u , a=W0+W1~. , . .. +wjl~,,- 1 ,a+· .. +}\· ,. 1~, 1 •• , i=O, }, ... , k-1. 

(4.14) 

Substituting the qt ,.,a's from (4.14) in the expressions (1.2) and (1.3), 

we set ostimates of F ... and i.,. . 
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